

INTRODUCTION

Serological tests are a valuable diagnostic methodology for evaluating SARS-CoV-2 post-infection immunity. Specifically, they are a useful tool for monitoring the seroconversion associated with convalescence or vaccination and can help identify the possible need for re-vaccination within a given timeframe.

Currently used convalescent patient plasma pools and humanized mouse monoclonal antibody formulations are not reliable for use as Quality Control (QC) or External Quality Assessment (EQA) samples, due to their poor repeatability, crossreactivity, and lack of linearity. There is a pressing need for reliable QC and EQA materials that cover the diverse SARS-CoV-2 Serological IVD ecosystem.

AIM

To develop and demonstrate the performance of anti-S1 human monoclonal antibody formulated in a plasma-like matrix. The material has been benchmarked against the WHO reference material (NIBSC code:20/136), permitting the standardization of various serological assays and systems. The formulation is noninfectious, non-cross-reactive, and highly repeatable.

MATERIALS & METHODS

Microbix's panel of serological samples is comprised of seven different levels of neutralizing anti-S1 SARS-CoV-2 human monoclonal antibody (hMAb) in a proprietary human plasma-like matrix. The performance of the anti-S1 SARS-CoV-2 hMAb levels was evaluated using the Anti-SARS-CoV-2 QuantiVac ELISA (IgG) (Euroimmun) benchmarked against the NIBSC code:20/136 standard and the Elecsys ACOV2 / ACOV2 S (Roche) (Table 1 and 2). Three levels representing high (H), medium (M) and low (L) levels were selected for additional feasibility studies by clinical laboratories (1WA, OASYS Table. 3) and were confirmed internally by serological rapid test POCT detection methodologies.

Product Name	Cat#	Level
PROCEEDx [™] anti-SARS-CoV-2 Ab Positive Sample L1	VP-19-19L1	Н
PROCEEDx [™] anti-SARS-CoV-2 Ab Positive Sample L2	VP-19-19L2	Н
PROCEEDx [™] anti-SARS-CoV-2 Ab Positive Sample L3	VP-19-19L3	н
PROCEEDx [™] anti-SARS-CoV-2 Ab Positive Sample L4	VP-19-19L4	Μ
PROCEEDx [™] anti-SARS-CoV-2 Ab Positive Sample L5	VP-19-19L5	М
PROCEEDx [™] anti-SARS-CoV-2 Ab Positive Sample L6	VP-19-19L6	L
PROCEEDx [™] anti-SARS-CoV-2 Ab Positive Sample L7	VP-19-19L7	L.

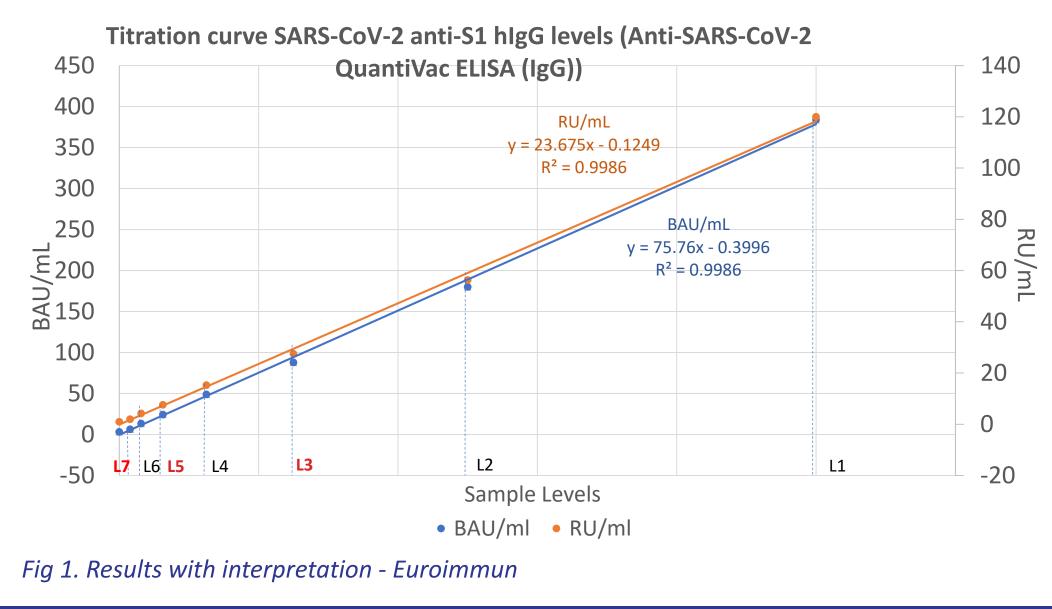
Table 1. Samples used for OEM and internal feasibility studies

EQA Product Name	Cat#	Level
anti-SARS-CoV-2 Ab Positive Sample L3	PT-19-19L3	Н
anti-SARS-CoV-2 Ab Positive Sample L5	VP-19-19L5	Μ
anti-SARS-CoV-2 Ab Positive Sample L7	VP-19-19L7	L

Table 2. Samples used for EQA pilot programs

quality controls

¹ Microbix Biosystems Inc, Mississauga, Ontario, CANADA


RESULTS

2606-10 G ~ E201201AO ~ 17.12.2020							
	No. Sample	Volume in mL Original	IgG				
			Result 1	Result 2	Mean	Mean	
No.			RU/ mL	RU/ mL	RU/ mL	BAU/ mL	
			Pos: ≥ 11	Pos: ≥ 11	Pos: ≥ 11	Converted ¹	
			bl: 8 - <11	bl: 8 - <11	bl: 8 - <11		
1	171220-L1	2*1,5	>120	>120	>120	>384 (MR)	
2	171220-L2	2*1,5	55.3	57.2	56.3	180.16	
3	171220-L3	2*1,5	27.8	27.2	27.5	88.00	
4	171220-L4	2*1,5	15.9	14.6	15.3	48.96	
5	171220-L5	2*1,5	7.8	7.5	7.6	24.32	
6	171220-L6	2*1,5	4.2	4.2	4.2	13.44	
7	171220-L7	2*1,5	2	1.9	2	6.40	
8	Blank	2*1,5	>1	>1	>1	>3.2	

A. Euroimmun - Anti-SARS-CoV-2 QuantiVac ELISA (IgG)¹

1. Data from OEMs – Semiquantitative Tests

Table 1. Results with interpretation - Euroimmun

CONCLUSIONS

The novel anti-S1 SARS-CoV-2 hMAb formulations showed excellent linearity when evaluated with the Anti-SARS-CoV-2 QuantiVac ELISA (IgG) and Elecsys ACOV2. Additionally, their successful detection across testing platforms and methodologies demonstrates that these formulations are cross-platform compatible and have the potential to be used for benchmarking the performance of current tests. Although, notably, the numerical BAU/mL values differed between assays, which can be explained by differences in the use of antigens and applied testing methods. Lastly, the anti-S1 SARS-CoV-2 hMAb formulations can be used as prospective cross-platform EQA samples and quality controls for emerging SARS-CoV-2 lgG quantification tests designed to monitor vaccination efficacy.

REFERENCES

1. Anti-SARS-CoV-2 QuantiVac ELISA (IgG) (Euroimmun) Technical bulletin; El 2606 D UK E.pdf 2. GenScript cPass[™] SARS-CoV-2 Neutralization Antibody Detection Kit Instruction for Use

Novel neutralizing anti-S1 SARS-CoV-2 human monoclonal antibody formulation for use as a cross-platform EQA sample and prospective

P. Zhelev¹, A. Alagic¹, J. Auluck¹, M. Luscher¹, K. Hughes¹, S. Niyamuddin¹, P. Casselli¹

B. Roche - Elecsys[®] Anti-SARS-CoV-2

SARS-CoV-2 Anti S1 IgG in 1.5 mL Vial						
Instrument e411			e411			
Assay	Elecs	ys [®] ACOV2	Elecsys [®] ACOV2 S			
Interpretation						
Non-Reactive	С	OI < 1.0	<0.800 BAU/ mL			
Reactive	CC	$1 \geq 1.0$	\geq 0.800 BAU/ mL			
Sample	COI	Result	Concentration [BAU/ mL]	Result	Interpretation	
Lot 171220-L1	0.24	Non-Reactive	>MR	>250 BAU/ mL	Reactive	
Lot 171220-L2	0.24	Non-Reactive	>MR	>250 BAU/ mL	Reactive	
Lot 171220-L3	0.238	Non-Reactive	>MR	>250 BAU/ mL	Reactive	
Lot 171220-L4	0.246	Non-Reactive	192	192 BAU/ mL	Reactive	
Lot 171220-L5	0.239	Non-Reactive	108	108 BAU/ mL	Reactive	
Lot 171220-L6	0.246	Non-Reactive	58.1	58.1 BAU/ mL	Reactive	
Lot 171220-L7	0.261	Non-Reactive	31	31.0 BAU/ mL	Reactive	

Table 2. Results with interpretation - Roche

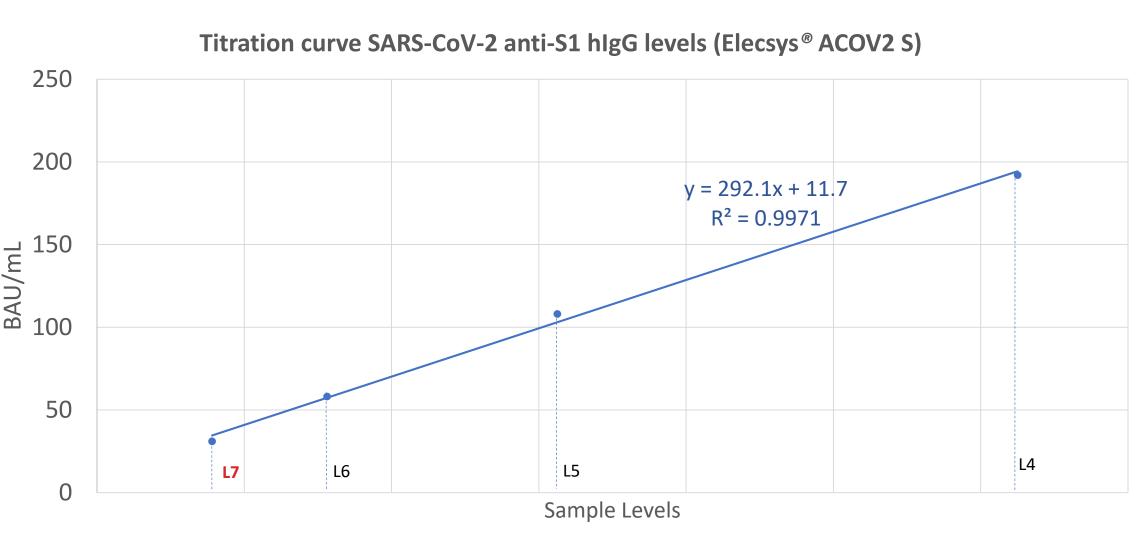


Fig 2. Results with interpretation - Roche

ACKNOWLEDGEMENTS

We would like to acknowledge that the data used in the poster was provided by:

Roche - Basel, Switzerland Euroimmun - Lübeck, Germany BTNX – Ontario, Canada One World Accuracy – British Columbia, Canada

CONTACT INFORMATION

Pavel Zhelev, Director Product Management (QAPs) email: <u>pavel.zhelev@microbix.com</u>

 MICROBIX
 265 Watline Avenue

 MICROBIX
 265 Watline Avenue

 Mississauga, Ontario, Canada L4Z 1P3

ACCURACY®

2. Internal Data from POCT BTNX Rapid Response COVID IgG/IgM

REACTIVE (++++)

REACTIVE (++)

Legend ++++= High Positive + = Medium Positive - = Low Positive

REACTIVE (+) Fig 3. Results with interpretation - BTNX

3. Data from Oneworld Accuracy EQA Pilot - OASYS informatics system

A. Platforms with confirmed performance (combined) by EQA samples

Tests Used By Participants in Anti-S1 SARS-CoV-2 IgG Pilot Study

Manufacturer	Name of test	Number of Users
Abbott	SARS-CoV-2 IgG (N-protein)	1
GenScript	cPass [™] SARS-CoV-2 Neutralization Antibody Detection Kit ²	1
BTNX	Rapid Response COVID IgG/IgM	1

B. Statistical data Oneworld Accuracy (1WA OASYS pilot study 2021) Summary of Anti-S1 SARS-CoV-2 IgG Pilot Study S-protein based tests - detectability

2 Participants 2 Countries	18 Number of Responses 2 Participating Assays	100% Success Rate for H Sample (L3)	100% Success Rate for M Sample (L5)	50% Success Rate for L Sample (L7)	
Summary of Anti-S1 SARS-CoV-2 IgG Pilot Study N-protein based test – specificity					

1 Participant	9 Number of Responses	100% Success	100% Success	100% Success
		Rate for H	Rate for M	Rate for L
1 Country	1 Participating Assay	Sample (L3)	Sample (L5)	Sample (L7)

²GenScript cPass[™] SARS-CoV-2 Neutralization Antibody Detection Kit is a blocking immunoassay designed for qualitative direct detection of total neutralizing antibodies to SARS-CoV-2 in human serum and K2-EDTA plasma. The assay is designed to detect protecting levels of neutralizing antibodies. Negative result refers to < 30% Signal Inhibition and therefore low level of neutralizing antibodies will be considered negative result.

